多面体环:T(3,3)和T(6,3)
Torus links: T(3,3) and T(6,3)
使用说明
- 所有模型资源均由用户上传分享,内容来源于网络公开资源
- 侵权投诉:通过抖音私信 @jobsfan 联系我们(需附版权证明),24小时内处理
- 模型将通过邮件发送(5分钟内自动发送),感谢理解带宽压力,超过1小时没收到,请联系我们
关于费用
我们是爱好者共建社区,为维持服务器成本,每个模型收取微量费用(仅覆盖基础开支)。我们承诺最低成本运营,感谢您的支持!
扫码手机访问
抖音私信 @jobsfanSummary
These torus links were constructed by Hillis Burns, Shannon Timoney, Hall Pritchard (students in Math 383D Knot Theory Spring 2023).
A torus knot or link is a curve which is embedded on a torus (the mathematical name for the surface of a doughnut). These curves can be distinguished by the number of times the curve winds around the long way about the torus and then number of ways the curve winds around the short way. The T(p,q) torus knot/link winds p times around the long way and q times around the short way.
When p and q have no common factors, for example T(2,11), the curve is a knot. When p and q have common factors, the curve is a link. For example, T(2,6) is a 2 component link an each component winds once around the long way and three times around the short way. Many examples can be found on the Knot Plot website: https://knotplot.com/knot-theory/torus_xing.html
The torus links here are the following:
• T(3,3) which has 3 components, each of which winds once around the torus the long way and once around the short way.
• The T(3,3) torus link on the torus.
• T(6,3) which has 3 components, each of which winds once around the torus the long way and twice around the short way.
More on the math and construction of torus knots and links can be found here: https://mathvis.academic.wlu.edu/2023/05/19/overview-of-torus-shapes-knots-and-links/
Further details on constructing the torus links in Cinema 4D can be found here: https://mathvis.academic.wlu.edu/2023/05/19/new-torus-link-improved-visualizations-and-cinema-4d-problems/
Print Settings
- Printer brand:
Stratasys
- Printer:
uPrint SE
- Supports:Yes
How I Designed This
More on the math and construction of torus knots and links can be found here: https://mathvis.academic.wlu.edu/2023/05/19/overview-of-torus-shapes-knots-and-links/
Further details on constructing the torus links in Cinema 4D can be found here: https://mathvis.academic.wlu.edu/2023/05/19/new-torus-link-improved-visualizations-and-cinema-4d-problems/
License
Torus links: T(3,3) and T(6,3)
by dennedesigns is licensed under the Creative Commons - Attribution - Non-Commercial - Share Alike license.
相关内容
猜你喜欢
联系我们
热门推荐
-
Fidget Spinner - 单体打印 / 无需轴承2023-03-26
-
泰拉菲克思流浪者螺帽扳手V22023-06-07
-
书架支撑结构2024-01-04
-
IKÄ 365 系列罐盖扣2024-01-14
-
藏身载具:VKB战斗者装备2024-03-18
最热下载
-
怪兽大战:1998版2023-03-26
-
可定制像素珠子照片面板2023-03-26
-
安益卡通 i3 迷你 HGX 轻量挤出器2024-04-21
-
GLOCK 17型手枪2024-05-03
-
HomePod mini 壁挂式插座支架(欧规版)|稳固不占地·支持线材整理2024-05-04
最新模型
-
FLsun SR HGX Bambu直接驱动挤出机2025-07-18
-
性感美女3d人像(带基座)2025-07-17
-
丰满跪姿美熟女2025-07-16
-
私密羞羞娱乐骰子2025-07-15
-
坏龙家的大宝贝女生别下2025-06-26