参数化的二维四分体:T(2,4)
Torus links: T(2,4), T(2,6), T(2,8)
使用说明
- 所有模型资源均由用户上传分享,内容来源于网络公开资源
- 侵权投诉:通过抖音私信 @jobsfan 联系我们(需附版权证明),24小时内处理
- 模型将通过邮件发送(5分钟内自动发送),感谢理解带宽压力,超过1小时没收到,请联系我们
关于费用
我们是爱好者共建社区,为维持服务器成本,每个模型收取微量费用(仅覆盖基础开支)。我们承诺最低成本运营,感谢您的支持!
扫码手机访问
抖音私信 @jobsfanSummary
These torus links were constructed by Hillis Burns, Shannon Timoney, Hall Pritchard (students in Math 383D Knot Theory Spring 2023).
A torus knot or link is a curve which is embedded on a torus (the mathematical name for the surface of a doughnut). These curves can be distinguished by the number of times the curve winds around the long way about the torus and then number of ways the curve winds around the short way. The T(p,q) torus knot/link winds p times around the long way and q times around the short way.
When p and q have no common factors, for example T(2,11), the curve is a knot. When p and q have common factors, the curve is a link. For example, T(2,6) is a 2 component link an each component winds once around the long way and three times around the short way. Many examples can be found on the Knot Plot website: https://knotplot.com/knot-theory/torus_xing.html
The torus links here are the following:
• T(2,4) which has 2 components, each of which winds once around the torus the long way and twice around the short way.
• T(2,6) which has 2 components, each of which winds once around the torus the long way and three times around the short way.
• T(2,8) which has 2 components, each of which winds once around the torus the long way and four times around the short way.
More on the math and construction of torus knots and links can be found here: https://mathvis.academic.wlu.edu/2023/05/19/overview-of-torus-shapes-knots-and-links/
Further details on constructing the torus links in Cinema 4D can be found here: https://mathvis.academic.wlu.edu/2023/05/19/new-torus-link-improved-visualizations-and-cinema-4d-problems/
Print Settings
- Printer brand:
Stratasys
- Printer:
uPrint SE
- Supports:Yes
How I Designed This
More on the math and construction of torus knots and links can be found here: https://mathvis.academic.wlu.edu/2023/05/19/overview-of-torus-shapes-knots-and-links/
Further details on constructing the torus links in Cinema 4D can be found here: https://mathvis.academic.wlu.edu/2023/05/19/new-torus-link-improved-visualizations-and-cinema-4d-problems/
License
Torus links: T(2,4), T(2,6), T(2,8)
by dennedesigns is licensed under the Creative Commons - Attribution - Non-Commercial - Share Alike license.
相关内容
猜你喜欢
联系我们
热门推荐
-
椭圆形叶片NACA气foil螺旋桨三维模型库2023-03-26
-
Galaxy折叠手机系列4/5控制器适配器3D模型2024-03-21
-
36号夹持卡配神秘不显眼顶盖,多孔径橡胶接头通用510线纹设计。2024-03-25
-
2024 FRC 注牌耳环2024-03-30
-
Apple Vision Pro磁吸充电盒3D模型2024-04-18
最热下载
-
开源 1:10 四驱竞技型 RC 车2025-07-08
-
FFBeast仿真飞行器模拟轮部件2024-04-19
-
JeNo 3" 笼罩 DJI O3 + 支架 + 电池保护 + 40° 防撞器2024-04-19
-
安益卡通 i3 迷你 HGX 轻量挤出器2024-04-21
最新模型
-
戴森V6真空吸尘器配件壁挂支架2025-07-17
-
兽人轮毂:专为28毫米比例车辆设计2024-05-08
-
凯伯水晶钥匙扣2024-05-08
-
撒旦魔王冠绝天下2024-05-06
-
适用于MK2 Scirocco的三件式格栅夹具套装2024-05-06